Asymptotic behavior for the 1D stochastic Landau–Lifshitz–Bloch equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Stochastic Strongly Wave Equation on Unbounded Domains

We study the asymptotic behavior of solutions to the stochastic strongly damped wave equation with additive noise defined on unbounded domains. We first prove the uniform estimates of solutions, and then establish the existence of a random attractor.

متن کامل

Stochastic averaging and asymptotic behavior of the stochastic Duffing-van der Pol equation

Consider the stochastic Duffing-van der Pol equation ẍ = −ω2x− Ax −Bx2ẋ + εβẋ + εσxẆt with A ≥ 0 and B > 0. If β/2 + σ/8ω > 0 then for small enough ε > 0 the system (x, ẋ) is positive recurrent in R \ {0}. Let λ̃ε denote the top Lyapunov exponent for the linearization of this equation along trajectories. The main result asserts that λ̃ε ∼ ελ̃ as ε → 0 where λ̃ is the top Lyapunov exponent along tra...

متن کامل

Asymptotic solutions of the 1D nonlocal Fisher-KPP equation

Two analytical methods have been developed for constructing approximate solutions to a nonlocal generalization of the 1D Fisher– Kolmogorov–Petrovskii–Piskunov equation. This equation is of special interest in studying the pattern formation in microbiological populations. In the greater part of the paper, we consider in detail a semiclassical approximation method based on the WKB–Maslov theory ...

متن کامل

Asymptotic Behavior of Solutions of 1d-burgers Equation with Quasi-periodic Forcing

n=(n1,... ,nd)∈Z fn exp{2ni(n, α+ xω)}. Here α = (α1, . . . , αd) ∈ Tor, and (α + xω) ∈ Tor is the orbit of the quasiperiodic flow {S} on Tor, i.e. Sα = α + xω, −∞ < x < ∞. We shall assume that ω is Diophantine, i.e. |(ω, n)| ≥ K/|n| for positive constants γ, K, |n| = ∑d i=1 |ni| 6 = 0. The coefficients fn decay so fast that ∑ |fn| · |n| <∞ for some r > 1. Then Fα, F ′ α can be considered as va...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2020

ISSN: 0022-2488,1089-7658

DOI: 10.1063/5.0010740